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Fuzzy Logic in Arti�cial IntelligenceErich Peter KlementFuzzy Logic Laboratorium LinzJohannes Kepler Universit�atA-4040 Linz, AustriaE-mail: klement@flll.uni-linz.ac.at Wolfgang SlanyChristian Doppler Laboratory for Expert SystemsTechnische Universit�at WienA-1040 Vienna, AustriaE-mail: wsi@vexpert.dbai.tuwien.ac.atJune 23, 1994AbstractAfter a basic introduction of fuzzy logic, we discuss its role inarti�cial and computational intelligence. Then we present innovativeapplications of fuzzy logic, focusing on fuzzy expert systems, with onetypical example explored in some detail. The article concludes withsuggestions how arti�cial intelligence and fuzzy logic can bene�t fromeach other.I. IntroductionIn 1948, Alan Turing wrote a paper [1] marking the begin of a new era,the era of the intelligent machine, which raised questions that still remainunanswered today. This era was heavily in
uenced by the appearance of thecomputer, a machine that allowed humans to automate their way of thinking.However, human thinking is not exact. If you had to park your car pre-cisely in one place, you would have extreme di�culties. To allow computersto really mimic the way humans think, the theories of fuzzy sets and fuzzylogic were created. They should be viewed as formal mathematical theoriesfor the representation of uncertainty, which is essential for the managementof real world systems, as it mimics the crucial ability of the human mind tosummarize data and focus on decision relevant information.1



Marvin Minsky, one of the founding fathers of arti�cial intelligence, oncede�ned the latter as\... the science of making machines do things that would requireintelligence if done by men."Similarly, Lot� A. Zadeh, who in 1965 wrote the founding paper on fuzzy settheory [2], once described the aim of this theory as being\the construction of smarter machines."Zadeh recently coined the term MIQ (machine intelligence quotient) to re-fer to this particular aspect of the growing number of intelligent consumerproducts and industrial systems [3].Proponents of the so-called `strong' arti�cial intelligence believe thateventually, these machines will be as intelligent as we human beings arenow. Thinking positively about technology, everything that is conceivableto be solved by arti�cial means will eventually be realized if it is interestingenough. Of course some intellectual processes have been shown to be emer-gent properties, such as `consciousness'. The concept of emergent propertiesof complex systems was �rst observed by von Bertalan�y [4] in the 1920s inhis study of complex biological systems. He noticed that complex assembliesof entities organized in particular ways can reveal unique properties not pos-sessed by the individual entities alone. Emergent properties cease to exist ifthe whole is broken into components or if the components are organized ina di�erent way. Additionally, emergent properties cannot be understood bythe study of isolated components. Similar to the notion of a critical mass inphysics, an emergent property will suddenly pop up when a su�cient amountof mass has been accumulated. Contrary to reductionistic approaches, theseapproaches normally assume a holistic view of the world, i.e. something com-plex can be more than simply the accumulation or `sum of its parts'. Ofcourse, as with the atomic bomb, which was in a certain sense the �rst ar-ti�cial application of the physical e�ect described above, the ethical aspectshave to be carefully considered. One has to be aware that any technologycan be used for good or for evil. However, not the technology in itself is goodor bad, but instead the humans that use it are so, since technology has so farbeen only a tool for human beings. In the case of intelligence, this might benot true anymore, since advanced intelligence may entail new ethical needs,2



but these new forms of intelligence have not yet reached a level where ethicalaspects become prevalent.II. Some elements of fuzzy logicIn this section, we brie
y outline how fuzzy logic extends classical Booleanlogic (or, equivalently, how fuzzy set theory generalizes Cantorian set theory).Given a (crisp) universe of discourse X, a fuzzy subset A of X (see, e.g.,[2, 5]) is characterized by its membership function�A : X ! [0; 1];where for x 2 X the number �A(x) is interpreted as the degree of membershipof x in the fuzzy set A or, equivalently, as the truth value of the statement`x is element of A'.The membership function of a fuzzy set is a natural generalization of thecharacteristic function of a (classical) subset A of X,1A : X ! f0; 1g;assigning to each element x in X the value 1 whenever x belongs to A, andthe value 0 otherwise.In order to generalize the set-theoretical operations like intersection andunion (or the corresponding Boolean logical operations conjunction and dis-junction, respectively), we need triangular norms and conorms [6, 7, 8]: Atriangular norm (t-norm) is a binary operation on [0; 1], i.e., a functionT : [0; 1]2 ! [0; 1], which is commutative, associative, monotone in bothcomponents, and satis�es the boundary conditionT (x; 1) = x:If T is a t-norm, then the dual triangular conorm (t-conorm) S : [0; 1]2 ![0; 1] is de�ned by S(x; y) = 1 � T (1� x; 1� y):There are many, in fact in�nitely many, t-norms and t-conorms, only fewof which are used in applications. The most important t-norms, togetherwith their dual t-conorms, are the following:3



Minimum TM, Maximum SMTM(x; y) = min(x; y); SM(x; y) = max(x; y);Product TP, Probabilistic Sum SPTP(x; y) = x � y; SP(x; y) = x+ y � x � y; Lukasiewicz t-norm TL, Bounded Sum SLTL(x; y) = max(x+ y � 1; 0); SL(x; y) = min(x+ y; 1):Weakest t-norm TW, Strongest t-conorm SWTW(x; y) = ( min(x; y) if max(x; y) = 1;0 otherwise,SW(x; y) = ( max(x; y) if min(x; y) = 0;1 otherwise.Given a t-norm T , its dual t-conorm S, and fuzzy subsets A, B of theuniverse X, the membership functions of the intersection A \ B, the unionA [B, and the complement Ac are given by:�A\B(x) = T (�A(x); �B(x));�A[B(x) = S(�A(x); �B(x));�Ac(x) = 1� �A(x):The values �A\B(x), �A[B(x), and �Ac(x) describe the truth values of thestatements `x is element of A AND x is element of B', `x is element of AOR x is element of B', and `x is NOT element of A', respectively.Given a t-norm T , its dual t-conorm S and propositions P , Q with truthvalues jjP jj and jjQjj, respectively, there are two main extensions of theBoolean implication P ) Q:S-implication jjP )S Qjj = S(1 � jjP jj; jjQjj);R-implicationjjP )R Qjj = supf� 2 [0; 1] j T (�; jjP jj) � jjQjjg;4



In Boolean logic, i.e., with truth values 0 and 1 only, S- and R-implicationalways are equivalent, which is no longer true in fuzzy logic: for the t-normTM the corresponding S-implication becomes the Kleene-Dienes implicationand the R-implication is the G�odel implication [9] which are quite di�erent.Note, however, that in the case of the  Lukasiewicz t-norm TL S- and R-implication coincide: they both yield the  Lukasiewicz implication.The fact that there is a wide range of possibilities for extending Booleanoperations to fuzzy logic may look disturbing for beginners in the �eld. How-ever, it re
ects the richness of fuzzy logic, as it allows for a very sensitive �netuning when modeling real world situations.III. Fuzzy logic, arti�cial intelligence, andcomputational intelligenceIt is important to note that the term fuzzy logic is used in two distinct senses.In its narrower sense, fuzzy logic is only one branch of fuzzy set theory. Fuzzyset theory was invented by Zadeh to be able to better represent such everydaynotions as the set of `tall persons'. Of course, this set is de�ned vaguely, andpersons will more or less be a member of it, i.e. member to a certain degree.Fuzzy logic in this narrow sense deals in a natural way with the representationand inference from such vaguely formulated or uncertain knowledge, similarlyto classical logic which deals with crisp knowledge where statements can onlybe either true or false (well, almost, at least if you do not count the �ndings ofKurt G�odel). In recent years, however, it has become increasingly common toemploy the term fuzzy logic in a much broader sense, making the di�erencebetween the notions of fuzzy set theory and fuzzy logic vanish. To avoidconfusion, we follow the trend to use fuzzy logic in its general sense.James Bezdek, editor in chief of the IEEE transactions on fuzzy systems,de�ned fuzzy logic in a delightful essay [10] to be one part of `computationalintelligence', altogether with such research areas as neural networks, evolu-tionary computation, and genetic algorithms. Bezdek contrasts the ABC's onintelligence: arti�cial, biological and computational. In the strictest sense,computational intelligence \depends on numerical data supplied by manufac-turers and [does] not rely on `knowledge'." Arti�cial intelligence, on the otherhand, uses what Bezdek calls `knowledge tidbits'. Heuristically constructed5



arti�cial intelligence such as an expert system is an example. Practicingknowledge engineers and neural smiths know the distinction is at times notprecise. Expert extraction of feature data for training a layered perceptroncertainly falls in the area of arti�cial intelligence. Using these features totrain the layered perceptron is primarily computational. Fuzzy inferenceengines crafted by experts fall into the de�nition of arti�cial intelligence.Algorithmic tuning of the engine with raw data, however, is computationalintelligence.Even though the boundary between computational intelligence and arti�-cial intelligence is not distinct, we can, making certain assumptions, monitorthe volume of research activity in each. Indeed, the separate identities ofcomputational intelligence and arti�cial intelligence are con�rmed by inspec-tion of the recent volume of publishing and patent activity [11].However, the term `Computational Intelligence' itself is not undisputed,since it had already been widely used to mean arti�cial intelligence beforeit was rede�ned by Bezdek, see for example the journal `Computational In-telligence', published since 1985, the conference `Computational Intelligence'taking place annually since 1988, and numerous other publications and or-ganizations using the term in this traditional sense.In both cases, arti�cial intelligence as well as fuzzy logic, one tries insome sense to imitate life in its problem-solving capability. The ways howto achieve this goal are di�erent in many respects, but there are also manycommon points where the two �elds overlap: Robert Marks [11] counted 4811entries on fuzzy logic in the INSPEC data base from 1989 to 1993, containingcitations from over 4000 selected journals, books, conference proceedings andtechnical reports | \22% of them [were] cross categorized in the expertsystem category, and 12% with neural networks." Based on various `beancountings', Marks concludes that the overlapping areas cover, depending onthe way to count, from 14% to 33%.It should not be left untold that there has been a lot of scienti�c antago-nism between fuzzy logic and arti�cial intelligence, and, accordingly, skepticson both sides exist and treat the other side with reservation, if not with openhostility. There are many reasons for this, e.g. some critics of fuzzy logiccredit the word `fuzzy' for being too controversial and misleading in itself,others maintain that anything that can be done with fuzzy logic and fuzzyset theory can be done equally well with classical logic and probability the-6



ory [12]1, and still others insist on denying fuzzy logic the status of a logicitself [13]. Of course these claims were refuted [14, 15, or see discussions inthe archives of the news-groups mentioned later in this article]. Fuzzy logicin its narrow sense is simply a logic of fuzziness, not a logic which itself isfuzzy. Just as the laws of probability are not random, so the laws of fuzzinessare not vague.On the other hand, critics of arti�cial intelligence have observed that thesometimes over-ambitious predictions made in the past did not come true.Some even go as far as to deny that there has been even one successful ex-pert system implemented that really became used. Others believe that theaim to create arti�cial intelligence is useless and impossible on philosophicalgrounds. However, such views are likely to become muted with the passageof time and a better understanding of the basic ideas underlying the theoriesof both arti�cial intelligence and fuzzy logic. We observe nevertheless that,nurtured by the current success of fuzzy logic in the real world, dangerouslyunrealistic predictions and claims appear again. Bart Kosko, a respectedscholar in the �eld and author of a best-selling textbook on `Neural Net-works and Fuzzy Systems' [16] for instance predicts for the next few decadesfuzzy logic based natural language understanding, machines that write inter-esting novels and screenplays in a selected style such as Hemingway's, or evensex robots with a humanlike repertoire of behavior [14]. Some researcherssuggest however that as attempts are made to make fuzzy systems larger,they will encounter similar di�culties as conventional reasoning methodolo-gies. Fuzzy logic is certainly not a philosopher's stone solving all problemsthat confront us today. But it has a considerable potential for practical ap-plications. The management of uncertainty will be of growing importance.This uncertainty can have various reasons, ranging from uncertainty due tothe lack of knowledge or evidence, due to an abundance of complexity andinformation, to uncertainty due to the fast and unpredictable developmentof scienti�c, political, social, and other structures nowadays.1But Cheeseman, the author of [12], also rejects nonmonotonic reasoning, default logic,and Dempster Shafer's theory, arguing that probabilities are better suited to model theworld, and that the other methods are at most harmless if not outright wrong.7



IV. Applications of fuzzy logicThe applications of fuzzy technologies fall mainly into two categories: fuzzycontrol applications, which are often rather simple but very e�cient fuzzyrule-based systems, such as autofocusing systems in cameras, washing ma-chines, automobile transmissions, subway control, or even handwriting recog-nition. In these applications, fuzzy logic is used as a powerful knowledgerepresentation technique that allows to hide unessential details and to han-dle uncertain data. However, their e�ciency depends also heavily on theuse of sensors and e�ectors, thus their success should really be explained bythe interaction of these various parts. The second category consists of thosemuch more complex systems that aim at supporting or even replacing a hu-man expert. Such applications are exempli�ed by medical diagnosis systems,securities funds and portfolio selection systems, tra�c control systems, fuzzyexpert systems, and fuzzy scheduling systems. In this second category, thereare still many problems that remain to be addressed, and there is an equallypressing need for a better understanding of how to deal with knowledge-basedsystems in which knowledge is both uncertain and imprecise.Areas where fuzzy logic and arti�cial intelligence meet in current researchinclude: fuzzy expert systems (e.g., for medical diagnosis or intelligent tutor-ing systems), theoretical investigations (e.g., combinations of fuzzy logic withmodal logics and other forms of defeasible reasoning, i.e. based on question-able knowledge; this also includes investigations into fuzzy logic programminglanguages such as fuzzy extensions of PROLOG), machine learning (e.g.,combinations of fuzzy logic with neural networks, genetic algorithms, asso-ciative memories, symbolic learning methods such as case based reasoning),robotics (involving motion control and planning capabilities, e.g. when 
yinga fully automated helicopter or driving a car on a freeway), pattern matching(e.g., face recognition), fuzzy deductive databases (e.g., to ease data retrievalin geographic information systems), or constraint satisfaction problem solv-ing methods (applied for example in manufacturing process scheduling [17],or in bridge design). 8



V. Fuzzy expert systemsLet us take a closer look at fuzzy expert systems as the archetypical spino� coming from the combination of techniques from fuzzy logic and arti�cialintelligence. Classical expert systems are computer programs that emulatethe reasoning of human experts or perform in an expert manner in a domainfor which no human expert exists. This could be due to a dangerous workingenvironment or simply because of a domain that is to large for one humanbeing. These expert systems typically reason with uncertain and impreciseinformation, using various methods besides fuzzy logic to handle them. Thereare many sources of imprecision and uncertainty. The knowledge that theexpert systems embody is often not exact, in the same way as a human'sknowledge is imperfect. Given facts or user-supplied information are alsooften uncertain.An expert system is typically made up of at least three parts: an inferenceengine, a knowledge base, and a working memory. The inference engine usesthe domain knowledge together with acquired information about a problem toprovide an expert solution. The knowledge base contains the expert domainknowledge for use in problem solving, very often in form of explicit facts andIF-THEN rules.A fuzzy expert system, usually, is an expert system that uses a collectionof fuzzy membership functions and rules to reason about data. The rules ina fuzzy expert system are typically of a form similar to the following:IF heat is low AND pressure is high THEN valve is closedwhere `heat' and `pressure' are (linguistic) input variables, i.e., names forknown data values, `valve' is a (linguistic) output variable, i.e., a name fora data value to be computed, low is one of the possible linguistic values ofthe variable `heat' described by membership function of the correspondingfuzzy set, high is a linguistic value of the variable `pressure', and closed is alinguistic value of the variable `valve'. The antecedent (the rule's premise)describes to what degree the rule applies, while the conclusion (the rule'sconsequent) assigns a fuzzy set or, if defuzzi�cation takes place, a crisp valueto each of the output variables. Most tools for working with fuzzy expertsystems allow for more than one conclusion per rule. The set of rules in afuzzy expert system is known as the rulebase or knowledge base.The general inference process proceeds in three (or four) steps.9



1. In the fuzzi�cation step, the linguistic terms de�ned through their asso-ciated fuzzy membership functions are matched with the actual valuesof the input variables, to determine the degree of truth for each rule'spremise.2. In the inference step, the truth values for the premises are propagated tothe conclusion part of each rule. This results for each rule in one fuzzysubset that is assigned to an output variable. Usually, only minimumor product are used as inference methods. In minimum inferencing, theoutput membership function is clipped o� at the height correspondingto the rule premise's computed degree of truth. In product inferenc-ing, the output membership function is scaled by the rule premise'scomputed degree of truth.3. In the composition step, all fuzzy subsets assigned to a given outputvariables are combined to form a single fuzzy subset for each outputvariable. Also in this case, two ways of composition dominate in mostapplications, namely, max and bounded sum. In max composition, thecombined output fuzzy set is constructed by taking the pointwise max-imum over all of the membership functions of the fuzzy sets assigned tothe output variable by the inference rule. In bounded sum composition,the combined output fuzzy set is constructed by taking the pointwisesum (cut o� at level 1 whenever it would be exceeded) of all the mem-bership functions of the fuzzy sets assigned to the output variable bythe inference rule.4. The optional defuzzi�cation step is used when it is useful and/or nec-essary to convert the output fuzzy set into a crisp value by choosing acrisp number which is representative for the fuzzy output set. This isalmost always the case in technical control problems where the outputmust be crisp, less often in expert systems where output fuzzy sets aresometimes linguistically approximated. There are at least 30 di�er-ent defuzzi�cation methods. Two of the more common techniques arethe center of gravity and center of maxima methods. In the center ofgravity method, the crisp value of the output variable is computed by�nding the variable value of the center of gravity of the membershipfunction for the fuzzy value. In the center of maxima method, the10



midpoint of the region where the fuzzy set assumes its maximum truthvalue is chosen as the representative crisp value for the output variable.It should be mentioned that min and product are two out of an in�nitenumber of possible multiple-valued generalizations of the logical operation`and' (conjunction) in Boolean (two-valued) logic.VI. A typical exampleTo cite one of the most prominent and successful fuzzy expert systems, wehave to refer to a very long ranging project initiated as early as 1976 byKlaus-Peter Adlassnig and resulting in a system in use today. `CADIAG-2',which is currently evolving to become `CADIAG-3', is a medical diagnosissystem based on fuzzy expert system technology ([3] contains a recent paperabout this very large project which has resulted in an enormous amount ofpublications; [5] also contains a description of CADIAG-2). A typical ruleof this system looks as follows (the rule has been slightly simpli�ed for thisexample):IF fever is frequent ANDhigh fever is frequent ANDknee dropsy is rare ANDcarditis is very-rare ANDarticular pain is almost-always ANDerythema is frequent ANDprevious tonsillitis is very-frequent ANDstaphylokokkus is never ANDincreased AST is almost-alwaysTHEN rheumatic fever is plausibleHere one can see again the two key concepts which play a central role in theapplication of fuzzy logic in expert systems. The �rst is that of a linguisticvariable such as `high fever', that is, a variable whose values are words or sen-tences in a natural or synthetic language such as frequent or rare. The otheris that of a fuzzy IF-THEN rule in which the antecedent and consequent arepropositions containing linguistic variables. The essential function served bylinguistic variables is that of granulation of variables and their dependencies.11



In e�ect, the use of linguistic variables and fuzzy IF-THEN rules results |through granulation | in soft data compression which exploits the tolerancefor imprecision and uncertainty. Of course, the e�ective membership func-tions represented by words such as very-rare have also to be determined andmust be known at inference time to the inference engine.For a detailed account of what expert systems in general and fuzzy expertsystems in particular are and how they work, we refer to [18, 19, 5].VII. Can fuzzy logic help to reduce compu-tational complexity?In the �nal `Future perspectives' section of his book [5], Hans-J�urgen Zim-mermann, who is also editor in chief of the in
uential journal Fuzzy Sets andSystems, points out an important potential bene�t that fuzzy logic couldbring to the �eld of arti�cial intelligence. In particular, for many problemsencountered in sub�elds of arti�cial intelligence, such as logic programming,deductive databases, or constraint satisfaction, complexity analysis resultsrange from intractable to undecidable, i.e. these problems are computation-ally very hard to solve. It is very easy to encounter problems not solvablewith current computing power. Zimmermann therefore raises the questionwhether fuzzy logic can help to solve such large and complex problems. Atthe time of the writing of his book, the answer was still `no'.We shortly restate here some common notions from complexity theoryto analyze whether another answer can be found. Many of the complexproblems most commonly encountered in the mentioned sub�elds of arti�cialintelligence have been proven to be so-called NP hard problems, referring totheir combinatorially explosive need for computing resources. Especially therun-time behavior of algorithms that solve these hard problems is at leastexponential in the size of the problem description. NP hardness formallyimplies that these problems are `at least as hard' as so-called NP completeproblems. According to Garey and Johnson [20], NP complete problems areknown to be\: : : `just as hard' as a large number of other problems that arewidely recognized as being di�cult and that have been confoundingthe experts for years. 12



: : : the knowledge that [a problem] is NP complete does providevaluable information about what lines of approach have the poten-tial of being most productive. Certainly the search for an e�cient,exact algorithm should be accorded low priority."The main result is that an exact and e�cient solution for NP hard problemshas eluded many researchers until now. These problems have therefore beentermed intractable. It is however possible to relax one of two criteria, eitherexactness or e�ciency, in which case the other criterion can be ful�lled inmany cases. One suggestion could be to relax the problem somewhat in itsunimportant characteristics, i.e. to model a simpli�ed version that does yieldan acceptable solution e�ciently. This is often su�cient for real world opti-mization problems. Another suggestion is indicated by the second sentencein above quotation, which is worth some more investigation. In particular, itis interesting to know that NP complete problems can be solved in polyno-mial time by a nondeterministic computer. The scenario is often such that asolution has to be `guessed', for instance by consulting an `oracle', followedby calling a polynomial algorithm to check whether the guessed solution iscorrect. This would suggest that an algorithm that intelligently `guesses' acomplete instantiation and then checks whether it is a solution could be usedto construct an algorithm that �nds a `reasonably good' solution for `almostall' problems.The following paragraph provides a little more background about theintroduced notions. It is an open problem of complexity theory whetherNP is equal to P, P being the problems solvable in polynomial time, i.e.the tractable problems. Indeed, many researchers even believe that thisquestion is currently to be the most important open question in computerscience as a whole. However, most researchers think that P and NP aredi�erent. This would mean that NP complete problems would remain, atleast in the worst case, intractable, i.e. their execution time grows more thanpolynomially when the structural parameters grow linearly. In such a case,doubling the speed of the computer does not really help since only negligiblelarger problems will be solvable by that computer, which is usually by farnot enough. The NP complete problems are characterized by the fact thatthey are NP problems and that all other NP problems can be polynomiallyreduced to these NP complete problems. This means that NP completeproblems are at least as di�cult as any other NP problem. To prove that a13



problem A is NP complete, it is su�cient to show that A belongs to NP andthat one other problem B known to be NP complete can be polynomiallytransformed into A. A general search problem H belongs to the NP hardproblems if and only if there exists a polynomial time algorithm for somedecision problem C known to be NP complete, assuming that H could beused arbitrarily often for further computations at a computational cost ofone unit-time interval by the polynomial time algorithm solving C (i.e., Cmust be polynomial time Turing-transformable into H).Therefore, the answer to the question posed by Zimmermann has to re-main negative on theoretical grounds. On the contrary, the computationalcomplexity will often increase when a problem is fuzzi�ed, since in generalthe search space will be enlarged.However, knowledge modeled using fuzzy logic can easily approximatea problem in its important characteristics. In particular, problems encoun-tered in the real world, such as in manufacturing, exhibit a tendency to obeycertain intangible rules, thus allowing the approximation to be done success-fully. The same would not be possible for random data, representing theworst case that must also be correctly handled by exact (but much slower)algorithms. Additionally, some heuristics such as described in [17] match par-ticularly well with fuzzy knowledge representation schemes, and thus help toe�ciently solve large and complex problems. In this connection, a `solution'to a problem is often understood pragmatically as the result of a search forthe best solution that can be found using all the available resources such asavailable computers, available time, and available algorithms. So, to providea more positive answer to the question raised by Zimmermann, we concludethat fuzzy logic can help to reduce complexity if the problem to be solvedcan be adequately approximated, which is true for many real world problems.VIII. Synergy e�ectsTo emphasize again in what respect arti�cial intelligence and fuzzy logic canmutually bene�t from each other, we want to point out that all complexsystems and machines that where built so far required more than just onebasic technology in order to be successful. In a large measure, techniques fromarti�cial intelligence and from fuzzy logic are complementary rather thancompetitive. We believe that it is possible to fruitfully combine techniques14



from both �elds in many areas. The resulting hybrid systems will be moreand more important in the future. Following the line of reasoning given atthe begin concerning emergent properties, the synergy e�ect resulting in thiscombination is necessary to achieve the ultimate goal of creating machinesthat act more and more intelligently for the bene�t of mankind.IX. Further readings : : :For readers interested in gaining a better understanding of one of the two�elds, fuzzy logic and arti�cial intelligence, we would like to refer to somegood introductory texts such as Winston's book on arti�cial intelligence [21],or, more recently, McNeill and Freiberger's book on fuzzy logic [14]. For thosewanting to dig deeper or to answer more elaborate questions, we recommendto consult some of the following texts and media (the list could of course bemuch longer, but we limit ourselves to the most accessible items):� The excellent `Encyclopedia of Arti�cial Intelligence' edited byShapiro [19] covers almost all possible subjects related to this �eld,including numerous articles on fuzzy logic.� The `Readings in Fuzzy Sets for Intelligent Systems' [22] to rapidly�nd the most in
uencing articles published in this �eld, as well as the`Selected Papers by L. A. Zadeh' [23].� The internet news-groups comp.ai and comp.ai.fuzzy, also accessibleelectronically via various mailing lists and blackboards, including theirrespective frequently-asked-questions (with answers) lists, which con-tain pointers to other electronic sources of information such as world-wide-web-servers, pointers to the most important conferences, majorjournals, scienti�c societies, research centers, major scienti�c projects,book-lists, as well as names of persons-to-know and companies relatedto the respective �elds. These news-groups are also forums to discussall topics related to the two �elds, and are equipped with searchablearchives extending over several years [15, 24].For readers searching references covering primarily the intersection of ar-ti�cial intelligence and fuzzy logic, we have compiled a list of some important15



textbooks [25, 18, 26, 27, 28] and conference proceedings [29, 3] in the bibli-ography.References[1] Alan M. Turing. Intelligent machinery. In D. C. Ince, editor, MechanicalIntelligence, Collected Works of A. M. Turing. North-Holland, 1992.Original paper appeared in B. Meltzer and D. Michie (Editors), MachineIntelligence, 5:3{23, 1969, Edinburgh University Press, but was actuallywritten as early as in 1948.[2] Lot� A. Zadeh. Fuzzy sets. Information and Control, New York: Aca-demic Press., 8:338{353, 1965. Republished in [23].[3] Erich Peter Klement and Wolfgang Slany, editors. Fuzzy Logic inArti�cial Intelligence. Proceedings of the 8th Austrian Arti�cial Intel-ligence Conference, FLAI'93, Linz, Austria, June 1993, volume 695of Lecture Notes in Arti�cial Intelligence. Springer Verlag Berlin Hei-delberg, 1993. A conference report is available on the net: URL:ftp://mira.dbai.tuwien.ac.at/pub/slany/
ai.txt.[4] L. von Bertalan�y. The organism considered as a physical system. InL. von Bertalan�y, editor, General system theory. Braziller, New York,1968. Republished from 1940.[5] Hans-J�urgen Zimmermann. Fuzzy Set Theory | and Its Applications.Kluwer Academic Publishers, 2nd, revised edition, 1991.[6] Erich P. Klement. Operations on fuzzy sets and fuzzy numbers relatedto triangular norms. In Proceedings of the Eleventh International Sym-posium on Multiple-Valued Logic, pages 218{225, Norman, 1981. IEEE,New York.[7] B. Schweizer and A. Sklar. Probabilistic Metric Spaces. North-Holland,Amsterdam, 1983.[8] D. Butnariu and E. P. Klement. Triangular Norm-Based Measures andGames with Fuzzy Coalitions. Kluwer, Dordrecht, 1993.16
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